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PHASE AND ENVELOPE OF LINEAR FM PULSE-COMPRESSION 

SIGNALS FROM HIGH-VELOCITY TARGETS 

ABSTRACT 

Equations for the phase and envelope of the output signal from a linear filter, 
matched to the transmitted signal, are derived.   The transmitted signal is assumed 
to have a flat band-limited amplitude spectrum and a linear group delay.   The 
input to the "matched filter" is the radar echo returned from a moving target 
whose velocity is essentially constant during the illumination time.   It is shown 
that the returned signal is related to the transmitted signal by a time dilation. 
The resulting expressions for the phase and envelope are functions which involve 
Fresnel integrals.   Approximations for these expressions are worked out.   They 
are shown to be similar in form to those which are obtained when the returned 
signal is assumed to be related to the transmitted signal by a Doppler shift. 
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PHASE AND ENVELOPE OF LINEAR FM PULSE-COMPRESSION SIGNALS 

FROM HIGH-VELOCITY TARGETS 

SECTION 1 

INTRODUCTION 

This document is a first step in exploring the possibilities of using an 

"all pulse-compression" (linear FM) radar system to obtain accurate estimates 

of target range, radial velocity, and radial acceleration.    The targets of pri- 

mary interest here are high-velocity targets, such as artificial satellites. 

It is well known that linear FM signals have an inherent coupling between 

range and velocity.   However, it is also known that for targets whose range is 

varying slowly,  and for small pulse-compression ratios, this can be overcome 

by transmitting alternately FM up and FM down, and taking the sum and differ- 

ence of the resulting time-delays to obtain unambiguous estimates of target 

range and velocity,  respectively.   When the target range changes rapidly and 

the pulse-compression ratio is high, certain simplifying assumptions are no 

longer applicable, and the problem may become considerably more difficult. 

This document investigates the problems from a fundamental point of 

view.    The accuracies required in the ultimate estimation of target parameters 

dictate the necessity of measuring the phase of the target echo.   We shall derive 

several expressions (with different degrees of exactness) for the phase and 

envelope of the output signal from a pulse-compression system.    These expres- 

sions will be carefully compared and interpreted in a subsequent document. 



We shall first review briefly the concepts of autocorrelation, matched 

filters, and correlation functions.    Given an aperiodic time function f(t),  such 

that 

1 f   (t) dt < °° , 

we define the autocorrelation function of f(t) to be 

0(7)=      \ f (t) f (t +  T) dt 

(1) 

(2) 

By a matched filter we mean a linear filter whose impulse response h(t) is a 

reflection of the time function to which it is matched, as illustrated in Fig. 1. 

Input 
f(t) 

h(t)  =  f(T-t) 
y(t) 

Output 

Fig. 1 .   Matched Filter 

The quantity, T, is a constant which makes the filter realizable [i. e. , we 

require that h(t) = 0 for t < 0].    The output is the convolution between the input 

and the impulse response, i. e., 

y(t)  =    \ f (x) h (t-x) dx . 
J_oo 

(3) 

Thus, 

y(t)  =   \ f (x) f (x+T-t) dx   . 
J-oo 

Letting T = T-t, we find that 

y(t)  =   j        f(x) f (X+T) dx   , 

(4) 

(5) 

which is equivalent to 0 (T) defined by Eq.  (1). 



Thus,  it is seen that matched filter reception and autocorrelation detection 

are identical processes, provided, of course, that the filter is truly "matched" 

to the input waveform. 

In radar applications, the filter is often matched to the transmitted wave- 

form.    The target echo may be quite different from the transmitted signal.    If 

this is the case, the output of the "matched filter" is no longer equal to the auto- 

correlation function but is now a cross-correlation function between the trans- 

mitted and received signals.    It is often referred to loosely as an autocorrelation 

function.    Regardless of its name,  it is this function which we are interested in 

examining.   We shall denote it by y(t) throughout the rest of this report. 



SECTION 2 

PHYSICAL MODEL 

Consider the model shown in Fig. 2 

B(t) r x(t) 

h(t) 

Transmitter Target Receiver y(t) 
S(W) X(w) Y(co) 

H(w) 

Fig. 2.    Pulse-Compression Model 

With the receiver matched to the transmitted signal, we have, 

h(t)   =   s(T-t)   ,   H(o>)   =   S*(w) exp [-jwT] , (6) 

where T makes the filter realizable, and the star denotes the complex conjugate. 

A linear-FM rectangular pulse, lasting from time t = 0 to t = T, has the 

form 

cos 
f(t) 

2*     fl + K    ~2» 
0 <t < T 

(7) 

0 elsewhere 

The Fourier transform of f(t) is a rather complicated function.   How- 

ever, it has been found* that the amplitude spectrum of f(t) becomes nearly 
2 

rectangular as KT   (the time-bandwidth product) becomes large (>100).    The 

present D-82 experimental radar facility employs a pulse-compression system 

with a time-bandwidth product of 1, 000.   A future system is proposed which 

*cf. Klauder, et al. , "The Theory and Design of Chirp Radars, " B. S. T. J., 
July 1960. 



will have a time-bandwidth product of 10, 000.   Instead of synthesizing a simple 

function of time, the procedure here is to synthesize a simple function of 

frequency, denoted by S(co). 

The function S(co) has approximately a rectangular amplitude spectrum 

A(CJ), and a linear group delay* T(a>).    For large time-bandwidth products, this 

corresponds approximately to a linear FM pulse. 

For our analysis, we shall use the model shown in Fig. 3. 

T(uu) 

rl 

T 
2 

(Wo+ 5) 

A((JU) 

•H 

 XT 
V2 

uu 
•C"0+?) Wo -<v!> UJ   -   — 

o     2 
uu 

Fig. 3.   Model of A(w)and T(w) 

* Group delay is defined as 

T(w)  = - 
d0(o)) 

dco 

where 0(cu) is the phase of the spectrum. 



The respective equations are: 

W        ,    . W 
H ; co   -    —    <   o)   <u   +     

'     0 2 '    ' 0 2 

(8) 

elsewhere 

W 
i        T / W\ W      I    i W 

|wl " w ("o" 7J;u,o-  2  -'w| -wo+T forFMuP 

W   ("o + 1); "  W   lwl + W   K+ 7j;w0"   7   "'"' "a,0+  7  for FM down 

elsewhere (for both FM up and FM down) 

(9) 

The spectrum S(u>) can be written as 

S(u>)  =  A(a))e;i0(Ct!)   , (10) 

where 0(w)   =  -  \   T (a;) dw plus a constant of integration.   Without loss of 

generality, we can let H = 1 in Fig. 3 and Eq. (8).   Doing this, we obtain 

j0(o;) W       .    . W 
eJ  v   '    ;    w   -    —    £   co   ^ u   +    — 

'    ^0 2 '    ' 0 2 

0 elsewhere 

It is clear that S(co) is an even function,  since A(co) and T(co) are both 

even functions.   For simplicity, we shall work only with the positive portion 

of the spectrum throughout the rest of this paper.   It must be remembered that 

the actual spectra contain negative frequencies. 



Integrating T(u;) and restricting ourselves to UJ ^ 0, we obtain 

j[cQ + c1 u> + c2 w\ 

8(d)   - 

w   ^   ^ w 
;   O)     -      —      Sttj^aj     +     — 
'     0 2 0 2 

elsewhere 

(12) 

where 

i - !("o-1) j'-•* j 

I 

(13) 

- for FM up 

+ for FM down 
(14) 

and c   is a constant of integration which will cancel out later.    Equation (12) 

and Fig. 2 shall be applicable throughout this paper. 

The following two pulse-compression systems are of particular interest: 

Pulse-Compression Systems T 
W 
27T 

0 
27T 

No. 1 
3 

(10   system) 

1 msec. 1 mc. 1280 mc. 

No. 2 
4 

(10   system) 

2 msec. 5 mc. 1280 mc. 

The length of the transmitted pulse is approximately equal to T. 

We shall regard the targets under discussion here as being essentially 

point targets.    Let the maximum radial acceleration of our targets be 200 
2 

m/sec .   Suppose a pulse of duration T is emitted at time t = 0.   Let a given 

target be at range R when the leading edge of the pulse strikes it.   Assuming 

8 



2R 
free-space propagation, this occurs at the time t  =    —    , c being the velocity 

of light.    Let the radial velocity and radial acceleration of the target at that 

time be equal to V and A, respectively. 

During the time interval («T) that the target is being illuminated, the 

change in radial velocity is 

AV  =  AT £0. 2 m/sec for system No. 1, 

^0.4 m/sec for system No. 2, 
2 

(since A s 200 m/sec ).   The corresponding change in range due to the accelera- 

tion term alone is 

1 2 
AR =   —   AT   ^0.0001 m for system No. 1, 

<0. 0004 m for system No. 2, 

This is only a few degrees of phase shift for the 1280-megacycle radar, which 

is very small indeed.   We are primarily interested in large radial velocities 
3 4 

(of the order 10   and 10   m/sec, producing a AR  =  VT of the order of 1 to 20 

meters). 

Throughout this paper we shall regard the target velocity as being constant 

during the illumination time. 



SECTION 3 

DOPPLER-SHIFTED SIGNAL 

One assumption which is often made is that the radar signal bounced off 

a moving target is a delayed and attenuated replica of the transmitted signal, 

except for a Doppler shift. *   This is only an approximation.   It is a fairly good 

one for small velocities.    In Appendix I it is shown that the correlation function 

(under this assumption) is equal to 

y(t) 
sin 

W lcos[(t' + /3)W(J + 5] (15) 

sin x 
The envelope has the familiar        form. 

In Eq.  (15) 

=   some constant which depends on the radar cross section of 

the target, 

=  t - 
2R 

- T 

_,_     T  /2V 
= T  w [—   wo 

- for FM up 
+ for FM down 

*By this we mean that the spectrum of the returned signal X(CJ) is related to the 
spectrum of the transmitted signal S(OJ) by 

2R 
-jw 

X(w)   =  ke (" +   T   wo) ' 
2V 

where   —    co„ is the "Doppler shift. " 
c        0 

11 



u-'„ w„ 
1 2V 
2 \ c 

(#)(T  <•*>) 

W,- 

± CJ 
0 

1 
w 
2 

+ for FM up 
- for FM down 

R the target range when the pulse strikes it, and 

V     -  the target radial velocity when the pulse strikes it. 

The above expression was derived primarily for the purpose of comparing 

it with the more exact expressions to be developed in the next section. 

12 



SECTION 4 

TIME-DILATED SIGNAL 

In Appendix II it is shown that (under the assumption of essentially constant 

velocity during the illumination period) the relationship between the transmitted 

signal s(t) and the returned signal x(t) is given by 

<\ - bN 

x(t)  =  k s (17) 

This corresponds to a "time dilation." Here 

c+V . 2R 
a   =    ——    ; b   =     

c-V c 
(18) 

and k, R, V, and c have the same meanings as before.   In Appendix II we also 

obtain the Fourier transform of x(t): 

X(w)   =  k a e *       S (aw)   . 

The output of the receiver is then 

Y(co)  =  X(w) S*(a>) e~ja/r  = k a e~^b+T) S(aw) S* (w) 

From Eq.  (10) it is clear that 

i   r 

S*(w)  = ' 

Similarly, we have 

e 
j0(aw) 

S(aw)  = 

w w 
u>0-    -g     ^o)^o;0+    7 

elsewhere 

W W 
OJ . -    —    s ao; ^ a:   +    — 

0        2 0        2 

(19) 

(20) 

(21) 

(22) 

elsewhere 

13 



Since a > 0, this can be written as 

W W 
•    a;    -     — U)    +    — 

eJ0(aa;)    [    _0 2_    ^ ^      0 
a a 

S(aw)   = 

0 elsewhere 

Combining (21) and (23), we obtain 

I   j[0(aw)-0(w)] W M0+     2 
)e *    w0"   7   "W-    a  

S(aw) S*(w)   =   ( 

\ 0 elsewhere 

Thus, over the non-zero interval, we have 

2 2 
0(aw) - 0(u>)  =  cQ + c1 aw + c2 (au>)   - [cQ + c   u> + c2 co\ 

2     2 
=  c   u) (a-1) + c   w   (a   - 1) 

1 ^ 

Let 

2V 
a - 1   = y   = 

c-V 

Y    =    c^V 

Substituting (24), (25) and (26) into (20), we obtain 

(23) 

(24) 

(25) 

a   - 1   =   (a-1) (a+1)  - y\( 

2c 

2 , W 
-joXb+T)   *"V+«   c2^ W V 

kae e ;    CJ. -     „    < u> ^ 
2 

0        2 a 

0 elsewhere 

(27) 

14 



Let co'' be the center of the non-zero region in the co domain, and let W" be the 

bandwidth of Y(w); i.e., let 

W" W 
%'-  ~ - wo - T (28) 

W 
CJ"  +      — 

0 2 
"       1 / w\ 
"   ' I (<"o +  -z) <29> 

Combining (28) and (29) with (18), and solving alternately for w'' and then for 

W" W 
——    in terms of d>   and    —   , we obtain 

2 0 2' 

«o " <*o (sw)" T (wr) • (30) 

W"        W  / c   \ / V   , 
<"n    rrw    • (31) 2 2   Vc+V^/      0   \c+V 

These expressions are valid for a receding target.    For an approaching 

target, we would obtain 

V 
- CO, 

0           0 \c-V, 

W"          W 
/  C> 

2             2 \c-V 0 Vc-V 

The output spectrum can now be written as 

j[co(-b-T+c1y] + co   C2yX] 
ka e 

W" W" 
(,)" - —- ^ co =Sco" + 

0 2                  0 2 
Y(co) 

(32) 

^0 elsewhere 

We must remember that Y(co) in Eq.  (32) is only the positive half of the 

actual output spectrum.   But since we have an even-frequency function, the 

output-time function y(t) can be obtained by taking twice the real part of the 

Fourier transform of the positive half of the spectrum; i. e., 

15 



/   ..        W" , , 2 
p\ " */   jwlt-b-T + c   y]     jo>   c   yX 

y(t)       2 Re   J- e e dw   .     (33) 

V- ?) 
Here Re f(t) means "the real part of f(t). "    Let 

t'   =  t - b - T (34) 

-t-   S   .T. c 

where t'   =   0 corresponds to the peak of the autocorrelation function for the 

case of zero velocity.   We then have 

»\ 0 2/   jw[t' +cxy]     jw 
2 

c   yX 
y(t)   =   2 Re    ^- e e dw   . (35) 

WN 

0 2 

This expression is exact for a constant-velocity target, and very nearly 

exact if the percentage change in velocity over the pulse duration is small. 

However, it cannot be integrated in closed form.   It is convenient to introduce 

the variable 

fi =   w - u "   , (36) 

so that y(t) becomes 

W" 
  r 2-, 

y(t)   =   2Re    £    eJM e    3 4        dS2  , (37) 

~2~ 

where 

a  =   (V + ycl)co(;'+yXc2(a;(p
2   , 

cg   =   t' +yci + 2yXc2u^'   ,     and 

c4 = yxc2   . (38) 

16 



Equation (37) can be manipulated into the form 

2 
u,       .       a 

C 1     J7r    T 
y(t)  =  2 Re k e dx 

Ju 
2 

=   2Rek1[Z (ux) - Z (u2)] 

where 

2 
a 

fX      j7r    ~2 
Z(x)   =   \        e dx (40) 

J 0 

is the complex Fresnel integral.    The resulting expression can then be put in 

terms of the simple Fresnel integrals, 

C(x)   =   j       cos br    ^"jdx    ;    S(x)   =  j 
x /      a2\ 

sin hr    ~ J dx   ,       (40a) 

which are tabulated functions.    This was done (the details are given in Appendix 

III), yielding 

x 
y(t)   =   —   f[C(x3) - C(x4)] cos Xl + [S(x3) - S(x4)] sin x\    ,        (41) 

y(t)        ° 

for FM up 

x. 
—    ([C(x3) - C(x4)] cos Xl - [S(x3) - S(x4)] sin x\    ,        (42) 

for FM down 

where 

ka 
x„   = 

0   " ^    ' 

(t')2 + 2y\c    t' 
x.   =   - 

1 4yXcr 

17 



fyXT ' 

V 
2W 

y\T 
7T W 2y\cf 

W" 
2 

, and 

-^ W 2 y\c, 
W" 
"2~ 

(43) 

The other symbols are the same as before.   We can also express y(t) in the 

following form: 

where 

y(t)   = I — I R cos {x1 - 0)   , 

R  - if [C(x3) - C(x4)] 2 + [S(x3) - S(x4)] 

(44) 

(45) 

for both FM up and FM down, and 

-1 
+ tan 

S(x3) - S(x4) 

0   = 

tan 
-1 

C(x3) - C(x4) 

S(x3) - S(x4) 

C(x3) - C(x4) 

for FM up 

(46) 

for FM down 

These expressions are exact for a target whose velocity is constant over the 

pulse duration.    Tables of the Fresnel integrals are available so that numerical 

answers of the correlation function y(t) can be obtained directly. 

It would, however, be desirable to obtain approximate "closed-form" 

expressions for both the envelope R and the carrier term cos (x   - 0).   We 

are primarily interested in the representations which are valid in the vicinity 

of the peak of the envelope. 

18 



In Appendix III we show that the peak occurs when c   = 0.    This corresponds 

to the time 

2R 
t   =    —    +T-yCl - 2yXc2^'    . (47) 

2V 
(Note that y =    ——   = 0 when V = 0).    Thus, we let t" = c   in order to empha- 

C<• V o 

size that the peak occurs at t" = 0; i. e., let 

tM=t-    —   _ T + yc, + 2yXco0}"     . (48) 
c '   1        r      2   0 v    ' 

In Appendix III it is also shown that (for the two pulse-compression sys- 

tems we consider here) the arguments x   and x   of the Fresnel integrals are 

close to unity at the peak of the envelope (i. e., at t" = 0) for large velocities. 

Thus, asymptotic approximations for R and 0 which are valid in the immediate 

vicinity of the peak are unsuitable except for very low target velocities.    How- 

ever, the analysis of a simple Doppler-shifted signal [with Eq. (15) as the 

resulting ambiguity function] is expected to be adequate for low velocities.   We 

shall, therefore, not attempt to get "closed-form" approximations for (45) and 

(46), which are valid in this region. 

As we move away from the peak, the absolute values of x   and x   increase 

quite rapidly, allowing us to use asymptotic approximations of C(x) and S(x), for 

large x, yielding approximate expressions for R and 0 which might provide 

some insight.    This was done in Appendix III with the result 

/sin 7rAA\ 
\^   TTAA ) ' 

R  =  2A (     _ A A  •) , (49) 

where 

A  = JyxTV t" 
V 7rT   (2y? 

V TTW   \   2 

Xc2 

^ (50) 

19 



0 = ± y_KT 
2W J\2y\c. 

W j+ for FM up      I 
~|- for FM down ( (51) 

In Eq.  (44) we expressed the correlation function by 

y(t)  =l-5rjRcos(xl -0)   . 

This can be written as 

y(t)   =   E cos 9   . (52) 

In Appendix III the following approximate expressions for the envelope E and the 

phase 9 were obtained: 

T)0 -1 £ 
9 » u> i'--(S)(5f)(A)f-/-(¥)lj: for FM up     ^ 

"| - for FM down ( 

(53) 

(54) 

These approximations are good for 

M >«-{&)&)(£)-»•(? (55) 

It is interesting to note that the (t")2 term in the expression for 0 cancelled 

with (V)   term in the expression for x    [see Eq.  (43)], so that 9 = x   - 0 has 

only linear time dependence. 

This is a direct result of the approximations we have made.    The conclu- 
2 

sion to be drawn is that the (t")   term is negligibly small in the region indicated 

by Eq.  (55).    This may or may not be the case in the immediate vicinity of the 

peak. 

20 



Let us consider a different method for approximating the output function. 

Going back to (37) we have 

W" 2 
. n    2        j[c   fi+ c   On 

Y(t)   =   2 Re    £     eJ(T    f e      3 4 d«l  . 
2TT J       W,, 

~2~ 
2 

It would be nice if we could simply ignore the J2   term.   Suppose we say that the 

answer we get by doing so is a good approximation if 

|c   0|  > 100 |c    Q2\    . (56) 

Letting tM = c   and substituting for c  , we find that (56) becomes 
o 4 

I-I>K^)(C^(4 «2 

Clearly, for any particular value of t" this inequality is most difficult to satisfy 
i   i W" when  I fi| is largest; i.e. , when S2 =  ±    —-   . 

Thus, (56) is satisfied if 

IH  >1 ••(&)£)<#¥-(?)*• 
2 

When the 12   term is ignored, (37) is integrated readily to yield, after taking 

the real part, 

/2k\/W^\   sm   LtM    —\ 
\*)\ 2/  rt„ ET\ 

sin 
y(t) * a | =11^-1     r    "      ,-,—   cos a   . 

We note that the envelope above is identical with Eq. (53).   Let us compare the 

phase with Eq.  (54).   We have, from (38), 

a =   (V + yCl) u^+yXc^')2   . (38) 

21 



When w& express t' in terms of t", with the aid of (48), we have 

»j't'   =  ^' f'-yCjC^' -2Y\c2(^)2   . (59) 

Substituting (59) mto (38), we obtain 

a  =   c^' t" -y\c2 (c^')2   . (60) 

This becomes 

,,,„,   /2v\/2c\/T\   .        2    +forFMup 
a   =   W0   V   *  (c^vj ^c=7J W   ("0>      - for FM down <61> 

Comparing this expression with the phase 6 in Eq. (54) we find that the two 

r   2 expressions are the same except for the last factor which, in (54), is l(u;'') 

/W"\21 2 
- I — )      instead of just (o> '•) .   However, since u>'' « to    (very closely) and 

W" < W, and since u>   is about three orders of magnitude greater than W, we 

see that a and 6 are identical for all practical purposes. 

Note that the region over which (58) is valid is, from (57), 

In (55) we required |t"| to be twice as large as that, which was a little more 

conservative. 

It is quite remarkable that the simple way of approximating y(t) shown 

above yields virtually the same result as the rather involved procedure of 

approximating the Fresnel integrals.. 

22 



SECTION 5 

SUMMARY 

We have derived three different expressions* for the output function y(t). 

Each expression is of the form 

y(t)   =   E cos  6   . 

(1) Simple Doppler Shift:   X(a>)   =   k e 

2R 

where 

2k    W 
E =   T   T 

sin (t» + 0) 

[s f+  f   "o)j 
iV'l 
2~J 

0   =   (t? +/3) w' + 6 

w 
2 

W          2V 
2             c     w0   ' 

t' -  t-    •    -T   , c 

0 _   2V              T   | - for FM up 
"c"    W0    W 1 + for FM do 

6 
2V           [       T            T            / 
c         0 [       2           W       0   \ 

CO ' 
0 -••H)- 

)] 

(62) 

j+ for FM up      ) 
^ - for FM down ( 

•Note:   The expressions listed here may differ slightly in appearance from the 

corresponding ones in the test.   They are identical, however. 
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c       =  the speed of light, 

R      =  the target's range when the pulse strikes it, and 

V      =  the target's radial velocity when the pulse strikes it. 

2R 
-jo; 

(2) Time Dilation:   X(w)   =  k e 
c+V (s- 

The exact expressions (within the limits of our assumptions) are: 

- (T)®J^7T\I1C(X3> " C<V2 + ls<V - s<*4>1 *!' • 

0     =     ± 
2yX 

S(x3) - S(x4) 

C(x3) - C(x4) 
+ for FM up 
- for FM down 

(63) 

The terms C(x) and S(x) are the Fresnel integrals, defined by Eq.  (40a), and 

0 

W" 
2 

c+V 
c^V Y    = 

2V 
c-V 

\   = 
2c 

c-V 

W 
2 

= t 
2R 
c 

0 

T ±y 

0  (cW) '    "2   ^cWJ ' 

\c+v) " wo \c+vy ' 

(w)[wo-   ¥   ' 
+    W^lj-forFMup       {     . 

2     I j + for FM down j 

y\   /TV _["    t" W""| |-for FM up       | 
*    \W/ .   / T \        ~2~ h + for FM down i  ' 

,,"](+ for FM up     ( 
^0 J I - for FM down I   ' 

'X  /T\   -T    t" W"~| 
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(3) Approximations for E and 6 in Eq. (63). 

t" 

0 «co" t" ± yX 
'W 

•fk 
for FM up     ) 

- for FM down I 

(64) 

W[w2-C 
These approximations are expected to be quite good for 

|t"|  >50W"yA   ^"^100  fc^T   . 

They may be adequate for considerably smaller values of 11" | . 

The "exact" expressions in (63) are not easily interpreted.    This will 

have to be done numerically.   We did, however, determine that the peak of the 

envelope occurs at the time when t" = 0.    The peak of the approximate expres- 

sion for the envelope in (64) occurs at exactly the same time.   It is interesting, 

also, to note that the expressions in (64), for both the phase and the envelope, 

are virtually identical to those in (62) when the target velocity is small. 

Due to the length of this document, we shall reserve the detailed interpre- 

tation, comparison, and application of the above expressions for a subsequent 

document,  ESD-TDR-64-129. 

%4 llifa<><<'<•< 
M.H.  Ueberschaer 
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APPENDIX I 

ANALYSIS OF A DOPPLER-SHIFTED SIGNAL 

We assume that the relationship between the transmitted and received 

Fourier spectra is 

2R 
-3    — w 

X(co)  =  ke S(co- coj   , (1-1) 
d 

where 

k is the attenuation constant, 

R is the range of the target when the pulse strikes it, and 

co.        is the "Doppler shift", given by 
d 

2V 
V-TV (I-2) 

where V is the radial velocity of the target when the pulse strikes it.   (We are 

here using the convention that V is positive when the target is receding from 

the radar.)   Consider the case of a receding target, and let 

2V 
a =  - cod =   _   coQ   . (1-3) 

If Eq. (11) is substituted for the transmitted spectrum, (1-1) becomes: 

2R 
"3w     c       j0(w+a) W W 

X(co)   = 

ke e ;co-    —    ^CO + OJ—co+  — 
0 2 0       2 

0 elsewhere 

(1-4) 
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Again, we must remember that this is only the positive half of the frequency 

spectrum.    Equation (1-1) can be written as 

2R 
"ja;    ~c~     j0(w + a) W   _      - Wi 

ke e ;    w0"
a"    I  SwSw0"a

f
+T 

X(u>) 

0 elsewhere 

We have 

Y(w)   =  X(w) S*(w) e~^T   . (1-6) 

By use of Eq. (1-5), this becomes 

!/2R        \ 
-jOJ  I + TI     j[0(w+Qf) _0(W)] w   ^     ^ W, 

ke        \ /  eJLVM ; w    - —  ^u sw   -fl +   _| 
0       2 0 

0 elsewhere 

(1-7) 

Now, 

0(w)   =   CQ + C   a) + c   a;2   , (1-8) 

with c   and c   given by (13) and (14).   Thus, 

0 (o> + a) - 0(w)  =  cn + c   (« + a) + C_ (w   +2ua+a  )- [ c   + c   u +c  u\ 

= 00 (2 c   a) + (c   a + c   a ) 

d-9) 

Let 

2 
2 c    a   =   /3, c   a + c   a     =6. (1-10) 
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Further, let u>' be the center of the non-zero region of Y(CJ), and let W be the 

bandwidth of Y(u>); i. e., let 

a 
tii'   =  it)   -    —    ,     — 

0 0 2     '       2 
W W-a 

~2~ (1-11) 

Then we obtain 

»:*(?•*) ik eJ   e 

Y(w) 

JCD/3 ,       W W 
e ;   to' £u Su1 +    — 

'   w0       2 0 2 

(1-12) 

0 elsewhere 

Our desired time function y(t) (i.e. , the correlation function) is twice the real 

part of the inverse Fourier transform of Y(w); i. e., 

y(t)   -   2Re     *-    £ 

Substituting (1-12), we have 

Y(cu) eJa,t  dw (1-13) 

w ' + 
W» 

r 2 jco 

27 J   ,    w     keJ6e 

2R      m    „ t -   —   - T + /3 
c 

da>       (1-14) 

Let 

V   -t-S-T c 
(1-15) 

We can integrate y(t) directly, obtaining 

k 16 
y(t)   =  -   Re eJ 

,       W< 
wo"  T 

w» 
co: - 

w w 
J[t'+^]«i [eJ[f +/3]   2     _e-j[t'+/3]   2 

—   Re e     e \ TTT; n  7T \ j[t'+/3] 
(1-16) 
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from which we finally obtain the desired expression 

y(t) 

/ f     * 
2k /W»\l sinl (t* + /3 )   2 

|cos[(t» + /3)uQ + fi] d-17) 
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APPENDIX H 

RELATIONSHIP BETWEEN TRANSMITTED AND RECEIVED RADAR SIGNALS 

For simplicity, we shall consider a point target with constant cross sec- 

tion.   Suppose the transmitter sends an impulse in the direction of the target 

at time t = 0.   The transmitted signal is given by 

Sj (t)  =   6(t)   , (II-l) 

where S(t) is the delta function.   Assume free-space propagation.    Let the 

target be at a distance 

R    =   ct (II-2) 

when the impulse hits it, c being the velocity of light.    The returned echo will 

then also be an impulse which will strike the antenna at time 2t   , i. e. , 

xx (t)   =  k 6 (t - 2tx)  =  k6    t-yl, (II-3) 

where the constant k depends on the radar cross section of the target.    Let 

another impulse be transmitted a short time T later, so that 

s2 (t)  =   6 (t - r)   . (II-4) 

For t   > T, this impulse will be at a position in space equal to R   - CT when the 

first impulse strikes the target.    Let the target have radial velocity V and 

radial acceleration A at time t .    For V « c, this second impulse will strike 

the target at approximately an interval T after the first impulse did.   We have 

shown in the text that for the targets and the radar parameters of interest to us, 

the acceleration has negligible effect (over the illumination time) on the velocity 

and range.   Here we assume T to be shorter than the total illumination time. 
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Thus, the relative velocity between the second impulse and the target at 

time t   is AV  =  c - V.    The distance between the target and this impulse is 

AR =  CT.   The time required for this impulse to "catch up" with the target is 

AR CT 
At  = 

AV" c-V 
(II-5) 

The target will be at range 

Vc 
R     =   R   + VAt   =   R   +    —— 

2 1 1       c-V 
(II-6) 

when this impulse strikes it.   The echo returned from this impulse is then 

given by 

x2 (t)   =  k 6 (II-7) 

Thus, the two returned pulses are a time T (1 +  —-jj apart, while the two 

transmitted pulses are only a time T apart.   A time-dilation has taken place. 

Since we can think of our actual transmitted signal as consisting of a 

sequence of impulses, we see that the target may be regarded as a time- 

varying ideal delay line in cascade with a time-invariant attenuator.   This is 

illustrated in Fig. II-l. 

s(t)  r 

W(t,   T) 

fW . 

k 

Transmitted 
Time- 

varying 
Delay 
Line 

Attenuator 
Received 

Signal Signal x(t) 

Fig. II-l.    Ideal Delay Line 

The delay line is a linear, time-varying filter.   The output y(t) of such a filter 

is related to the input x(t) by* 

*cf.  Laning and Battin "Random Processes in Automatic Control," McGraw- 
Hill,  1956, p.  226. 
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f(t) =   j S(T) W (t,   T)dT    , (II-8) 

where W(t, T) is the time-varying impulse response.   We may think of it as a 

curve in the t - T plane which, for the case of constant velocity, is a straight 

line, as indicated in Fig.  EI-2. 

Fig.  11-2.   Constant Velocity Case 

Here T is the " input time" and t is the "response time."   From Eq. (II-7), it 

is apparent that the equation of this line is given by 

wet. r) = 6 |t - -ji - r [i + il]j (II-9) 

For convenience let R • R .   Recognizing that W(t, T)   =  0 for t < T, we find 

that (II-9) becomes 

f(t) •!>•(-?-[-^) 
t- 52 

I  %77-\.     (11-10) 
1   + 

2V 
c-V, 
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2V        c+V 
But,  1 +  —=7  =  —=y  .    Letting 

c-V       c-V 

b  = —      and      a  = ^    , (H-ll) c c-V 

we obtain 

(?) f(t)  =  s I -r) 

The Fourier transform of f(t) is given by 

F<»)  = -L   £       f(t)e-jwt 

j_   r"     t-b 
2TT    J a e dt 

(11-13) 
00 

if        / *   _Jwb   -ja>(au) =   —-    \ s(u) e e J   x    '  du 
27T      J W 

.oo 
-jwb    1     f -j(aw)u 

=  a e J        -    j        B(U) e du   . 
_oo 

We recognize the last line of (11-13) as equal to 

F(w)   =  e~^h a S(aw)   . (H-14) 

Thus, the signal returned from the target is related to the transmitted signal 

s(t) by 

«• 
x(t)  =  k s I ~l  , (11-15) 

and its Fourier transform X(cu) is related to S(u>) by 

X(u>)  = k a e~^h S(aw)   . (11-16) 

Equations (11-15) and (11-16) are physically plausible, as we shall now show. 

Suppose we send two impulses, one at t = 0 and one at t = T; i. e., let 

s(t)  =   6(t) + 6(t - T)   . (H-17) 
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Then 

x(t)   =   k   \6 

(11-18) 
c c-V 

Thus, the received signal is attenuated,  delayed and stretched (since the target 

is receding). 

Next consider a CW signal; i.e. , let 

S(oj)   =   6(LC - a)  ) + 5(OJ + w.) 

from (11-16) we obtain, for the received signal, 

X(w)   =  ka e~iu) '  [6   (aw - w  )  + 6 (aw + u> )] 

(11-19) 

ka e 
-jcob 6L   J>\+6 L+ _° 

w. 

(11-20) 

c+V 
The new carrier frequency is therefore equal to   —   , where a =  —— 

Now, 

1 

a       c+V        ,        2V 
        1 +     
c-V c-V 

c 
for V <  —  this can be expanded in a power series, i. e. , 

(11-21) 

2V\ H   /2V \ 2      /2VV 
c-V/ + \c-V/ \c-V/ 

(11-22) 

2V 
For V < < c this becomes approximately equal to 1 -   —   ,  so that the new 

frequency is 

-TV) (11-23) 

which we recognize as the familiar "doppler-shifted" frequency. 
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APPENDIX III 

ANALYSIS OF A TIME-DILATED SIGNAL AND 

APPROXIMATIONS TO THE FRESNEL INTEGRAL EXPRESSIONS 

We start with Eq.  (37 of the text, which reads 

y(t)   =   2 Re  — 

TL 2 
ka    >    f    2        eJ[C3n+C4n] 

J     W" 
dn . (in-i) 

The exponent inside the integral can be written as 

j[c3n+c4n
2j  = jc4 

so that (III-l) becomes 

RM*) 

ka 
y(t)  =   2 Re, —   e 1 

W" 
~2~ 

W^ 
2 

Let 

(III-2) 

4 I 2c 
e ' '      dfi  . (III-3) 

4  I 2c 
7r a 

a 

dfi   = 

fc"'/        c    \ 

7* (-it) 

ff da 

(III-4) 
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Thus, we obtain 

l 9  \ 
2 

'(-%;•-^ y(t)  =  !j£  Ree    X 4/«JZ7 | e 
2   dfi  . (HI-5) 

This can be written as 

•M) 
y(t) = y^r Re    tz(u!> - z<u2>] • <m"6> 

where Z(u ) and Z(u ) are the complex Fresnel integrals, with u   and u   given 
12 1 Z 

by 

(ni-7) 

We must take the real part of the product of several complex quantities.   For 

convenience, let us list all the other symbols appearing in (III-6) in terms of 

the more elementary parameters; i. e., 
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c+V 2V 2c a ——  .   a =  —r;  ,  \   = 
c-V c-V c-V   ' 

a      -   (f +yc1)w(J
,+yAc2 (cop     , 

C3    =   V +yCl + 2yXC2 Wo' 

C4    = yXC2   ' 

-1 /co   -  ^\ 
WU       2^ 

for FM up , 

T   / W\ 
"  W   ^0 +   2 j 

2W 

for FM down , 

for FM up , 

(III-8) 

2W 
for FM down , 

CO" 
0 

W" 
2 

wo (cTv) "   2" (cTv) 

\c+V/ "   W0 \c+vj 
W 
2 

2R t T 
c 
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We note that   V'cT" is imaginary for FM up and real for FM down; i. e. , 

/ T~ 
iVy*  gw for FM up 

^4   = 

/ 
y \   7-rr-. for FM down 

2W 

(III-9) 

where j = v-1.    Now let 

ka 
X0   = JT^ 

X„    ~   <T - 
4c 

(t1)    +2yXcit' 

4y\c 

v y_XT 
2W 

X3   = 

X4   = 

TT [  c3 yrf\ 
TTW   [2yXc2 2       ' 

/yXTT   C3 _  W^l 
TTW    2y\c 2 

(111-10) 

Using these symbols, we have, for FM up, 

y(t)  =  xQ Re 
cos x, + i sin x 

1     J 

K 
-    [Z(jx3)-Z(jx4)]| (III-ll) 
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Similarly, we obtain, for FM down, 

/cos x   + j sin x I 
y(t)   =   xQ Re j     [Z (Xg) - Z (x4)] t . (111-12) 

All the x's are now real quantities.    The complex Fresnel integral Z (x) can be 

expressed (for real x) as follows: 

Z (x)   =   C (x) + j S (x) 

Z(jx) =   S(x) +j C(x) 

where 

(111-13) 

\      cos 7r  —  da   ;   S (x)   =     \      sin TT   — da 

These are tabulated functions.    Using (111-13), we obtain 

x 
y(t)  = — |[C (x3) - C (x4)] cos x1+[S (x3) - S (x4)] sin xx I      (ni-15) 

for FM up, and 

x 
y(t)  = — {[C(x3) - C(x4)] cos Xj - [S(x3) - S(x4)] sin xj .    (111-16) 

for FM down.    (Note that x , x   and x   have different values for FM up and FM 

down.)  We can express y(t) in the following form: 

y(t)   =(-? )Rcos (x   -0)   . (111-17) (-5 ) R cos (x, y 
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where 

/ 2 T 
R = v/[C(x3)-C(x4)]    +[S(x3)-S(x4)] (m-18) 

for both FM up and FM down,  and 

-i rs(v - s<x4)i + ta"      [c(V-C(x4)J for • UP   • 

0   =   / (111-19) 

1rs(x3)-s(x4)-i 

Lc(x3)-C(x4)J tan ——r ——- I for FM down   . Lc(x3)-C(x4)J 

These expressions are exact (within the limits of our approximations), and 

can be evaluated with the aid of available tables of Fresnel integrals.   However, 

we shall try to obtain approximate closed form representations for R and 0 in 

the vicinity of the peak of the envelope. 

Let us first consider the envelope R.   We wish to determine its maximum. 

From the analysis leading to Eq. (16) in the text, we expect this maximum to 

occur near c   = 0.    Let us postulate that the peak actually occurs at that point. 

A necessary condition for this to be so is that 

§-•• 
when 

c3   =   0   =   t' +yc1 + 2YX CgWjJ' 

2R 
=  t -    - T+vc   +2v\c   u>" 

c "   1        '     2   0 

(III-20) 
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Let us check whether this condition is satisfied.    From (111-18) we have, 

f  =4{2tC<V-C<*4>]   ^  [C(x3)-C(x4)] 
(111-21) 

+   2[S(x3)-S(x4)]   -  [S(x3)-S(x4)]j     . 

Equation (III—21) will be equal to zero if both 

i  [C(x3)- C(x4)]   =0, and 

£t  [S(x3)-S(x4)]   =0, 

(in-22) 

provided that R does not equal zero at the same time.    The Fresnel integrals in 

(III-22) are all of the form 

px(t) 
\ f (a) da  =   F[x(t)]-F(0)   , (111-23) 
J0 

where F is the indefinite integral of f.    Differentiating (111-23) with respect to t, 

we have 

1 j1 f(a)da = f[x(t)]   ^    . (in-24) 

In our case, x(t) is equal to either x   or x .    Referring to (111-10), we see that 
O 4 

X3   =   kl C3 + k2 

x^   =  k, c„ - k„ 
4 13       2 

(111-25) 
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where k   and k   are constants, and c   is of the form c   = t + another constant. 
12 o *> 

Hence, 

dx dx 

dT " ki "   dT   ' <m-26) 

Thus, the      ,       in (111-24) is equal to k , a constant.   Now, the function f (a) in 

our case is either equal to cos [ ^   a  1 or sin I -   a J .    Combining all this 

information.  (111-22) becomes 

^ lC(x3)-C(x4)]        klcos (1   x2)-cos(- LC(x3)-C(x4)]   =   kjeos (l   x^-cos^ 

h [Bin (l   4) " Sln (l   \)\ ) 
(111-27) 

jtLS(x3-S(x4)] k/ 

We wish to find out whether both these equations in (111-27) are identically zero 

when c   = 0.    Substituting (111-25) into (111-27), we obtain first 

£ [C(x3) - C(x4)]   =  kl   |cos    *   (k2 c2
3 + k

2
2 + 2kl k2 c3) 

1 (k2 c2 + k* - 2k   k   cj 
2 \ 1    3       2 1    2    3/1 

(111-28) 

- cos 

Let 

7r   /2    2     ,2\ 

y - f (2k, k2 c3, 
(111-29) 
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Making use of the trig-identity 

cos (x ± y)   =   cos x cos y + sin x sin y   , 

Eq.  (111-28) becomes 

jt  [C (x3) - C (x4)]   = kj [-2 sin x sin y]   . (111-30) 

Now,  since y contains c    as a factor, we see that y   =   0 when c     =   0. 
3 3 

Hence, sin y  =   0 when c    =   0, and 

1 [C(x3)-C(x4)]   =   0, whenc3   =   0   . (111-31) 

Similarly, using (111-29) again and the trig-identity sin (x ± y)   =   sin x cos y 

± cos x sin y, we obtain, for the second equation in (111-27), 

jx  [S (x3) - S (x4)]   =   k1 [2 cos x sin y]   , (111-32) 

which again contains sin y as a factor, yielding 

i [S(x )-S(x.)]   =   0, when c     =   0   . (111-33) 
at 3 4 3 

Thus we see that (111-22) is satisfied.   It can readliy be checked that R is not 

identically zero when c   equals zero.   Hence, we conclude that 

0   when cQ   =   0 (i. e. , when t   =   — + T - yc    - 2 yXc   w*»).  (111-34) 
dt 3 

Let us, therefore, think of c   as a shifted time variable; i. e. ,  let 
3 

t"   =   c     =   t -   —  - T +yc    - 2yAc    u>'' (111-35) 
3 c '    1 '      2    0 
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Note that Eq. (111-34) is satisfied regardless of the target velocity V.   When 

(2V\ 
since 7   =   —- 1 , which serves as a check. 

Let us, therefore, accept our postulate as being true; namely, that the 

envelope R has its peak when t"   =  0. 

When t"   =  c    =  0, the arguments x   and x   of the Fresnal integrals are 

(from III-10) equal to 

X3 

X4 

"V   irW   \ 2 /  * 

V   rW    \"     2 / 

From (III-8) we see that 

W 
2 
"       ^ / c \ / V \ 
I 2   ^c+V^ " W0  \C+V) 

which, for V < < c, reduces approximately to 

W"        W V 
2 2   " W0   c 

Similarly, we have 

2V 2V 
7     '  c-V   ~    c 

X   -  il   ~   2 X   "  c^V        2   ' 

so that, letting x  =  x    =   |x | when c     =  0, we have 

/4VT 
c 

VT   [~W v"| 
TTW     2       W0   c 

TW    /2v\        AT""] 
T "Wwo\/ fWj 

(m-36) 

(111-37) 
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CO 
W 0 

Letting B  =  -—   and f A  = r—   , this becomes 
& 27T 0 27T 

X   =% / — 
c 

r2TB (f) 0 V    B 
(111-38) 

For the particular radar of interest,  f   is approximately 1300 megacycles, and 

there are two pulse-compression systems to be considered: 

System No.  1: 

T   =   1 millisecond,    B  =   1 megacycle   ; 

System No. 2: 

T =  2 milliseconds,    B  =   5 megacycles   . 
4 

The range of radial velocities we consider here are 0 ^ V ^ 10   m/sec.    Let us 

check if x   has a maximum or a minimum in this region; i. e. , using (111-38), 
O 

we solve for 

dx 
dV 

-  0  -   i  [a V^ - b V3*] 

—i_. _  5  b   <Sv  =   0. 
2VT       2 

For V i  0, we obtain a - 3bV  =   0, or 

V  = 
w? 

3b "2   v'S" f 

c ^"c" Vl 
which simplifies to 

V  = 
Be 
6f„ 

(IH-39) 
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4 
For System No. 1, this corresponds to V =  3.85 x 10   m/eec, which falls 

outside our region of interest.   For System No. 2, the value is even larger. 
4 

Thus, since there are no local maxima or minima between 0 ^ V ^ 10   m/sec, 

we can compute the extreme values of x by taking the end points.    For V  =   0, 
4 

we simply get zero.   When V  =   10   m/sec, we obtain 

x   w   0. 237   for System No.  1 ; 
(m-40) 

x  w  0.745  for System No. 2 . 

Asymptotic series expansions of the Fresnel integrals C (x) and S(x) exist 

both in ascending powers of x (for x < 1) and in descending powers of s (for x > 1). 

The former are useful for x < .< 1 and the latter for x > > 1, since a few terms 

of the series then give us a good approximation. 

From the above estimates, we see that at the peak of the envelope the 
4 

argument of the Fresnel integrals is close to one when V  =   10   m/sec.    Thus, 

asymptotic expansions appear to be unsuitable in the immediate vicinity of the 

peak for large velocities. 

We could, of course, consider smaller velocities.   Suppose we require 

that 

x  =  0.01 << 1 , 

(where x  =  x    =   |x J when c     =  0). 

Using Eq. (111-10), we find that this corresponds to a radial velocity of 

approximately 

V «  10.5 m/sec for System No. 1, and 

V «   1.5 m/sec for System No. 2 . 
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However, for such low velocities, the analysis of a simple Doppler- 

shifted signal (as done in Appendix I) is expected to be quite adequate.    It does 

not seem worthwhile to go through the necessary approximations. 

Let us consider whether we can infer anything about the nature of y (t) as 

we move away from the peak of the envelope.    Going back to (III-10) and substi- 

tuting t" for c  , we have 

C;!-vf[^H'4 
(Here we imply that + goes with x , - with x ) 

Let us rewrite (111-41) as 

ifiHs] |x
3|=   K  \±-   H k„| . (111-42) 

We have previously (111-40) found that the product k   k   is of the order one when 
1 O 

t"   =   0.   We would now like to know how large t" has to be such that |x  | or 
o 

jx I are of the order 100 (so that we might use asymptotic expansions for 

large x). 

We let 

> < 

k. 
=   100   k     . (111-43) 

Substituting for k   and k , we have 
— O 

I*"!  = 10° [f (cTv) "wo (CTVF)]  '2^C
2'   • <m-44) 

This is approximately 

|t"|   M   200 
[w vl I/2v\ T1 



4 
Using V  =   10   m/sec, we have 

|t"]    ~  6usec for System No.  1; 
(m-45) 

|t"|    « 12usec for System No. 2. 

The following asymptotic approximations* are expected to be quite good for 

large values of x (say, x > 100). 

C(x)   m  J  •   Bin7rx2/2 
V
 ' 2 7TX 

(m-46) 

S(x) M j -cos •2/2 
V
 ' 2 7TX 

2 
Letting o; =  7r x /2 and using the approximations in (EII-46), we have 

C(x3)- C(x4)   = 

S(x3)-C(x4)   = 

rein at        sin a "1 

pcos a cos a *l 
(IU-47) 

(Although we are using equal signs, it is understood that these are only approxi- 

mations .) 

Substituting (111-47) into (111-18), we have 

1 T 1 1 2 v"l 1/2 R  = -J-2+l-rT    (Bin a   sin a   + cos a   cos or ) 

K        X4 3    4 J 

LX3        X4 3    4 J 

/2 

(111-48) 

*c.f. Watson "Theory of Bessel Functions," p. 545. 
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Let us rewrite (111-42) as 

ixj" Af}A  ' (in"49) 

where 

|A|<<|A| 

Thus, we have 

—   = -   II- -I (ignoring higher order terms). 

Similarly, 

— =  —  fl + — 1 (ignoring higher order terms), 

1 1 1   /,       2A       A2 \       1    /       2A 
-2 +   "2   =   -2  I1 -   T   +  ~2 h   -2   I1 +   T 
x„       x.        A    \ A /      A     \ 

A2\ 2 

"4 A /      A 

Furthermore, we have 

X3X4 
=   2 (i)HHHBB) 

2 2 =   ~~T;    (again, ignoring higher order terms). 
xo x A2 

3   e       A 
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Similarly, 

V°4 
ir/2       2\ 

=   2  (X3-X
4) 

=  ~ [A2 + 2 A A + A2 - (A2 - 2A A + A2)] 

=   g   [4AA] 

=   27rAA   . 

Substituting the above approximations into (111-48), we have 

1/2 
R 5 LA2 " A2 cos 2 7r A A ] 

= *£!j.[i -cos2 7r A A] 1/2 

7T A 

/Bin 7T A A\ 
^    7T  AA     ) 

(ni-50) 

But 1 - cos 2x  =   2 sin   x, so that (111-50) becomes 

R   N 2A 

Referring back to (111-17), the whole expression for the envelope E is 

(DI-51) 

E   =   J    2A    Sin^A 
X 7T  A A 

Substituting our elementary parameters back, we finally obtain 

E  =  a (B)(-)rdS R¥)J (ffl-52) 
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This is a good approximation for 

Let us now look at the phase angle 0 in the same region.   We had 

,1rs(x3)-s(x4)-i 

[C(x3)-C(x4)j     t- 
for FM up     ) 

0       *tan      I.,..,     „,_J    {    forFMdowni 

Let 

4> =  ± tan 0   . (111-53) 

Using (111-47), we have 

cos a,        cos Q!„ 
 4        3 

X4      "      X3 
0  =   —. ;    . (111-54) 

sin a sin aA 3 4 

We have, as before, 

With A < < A, let us ignore all terms except the first.   Then we get 

cos a   - cos a 
ill  =   — j    . (111-55) 

sin Q!„ - sin CXA 3 4 
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But 

a3   = \   (A + A)2   =  \   (A2 + A2 + 2 A A) ; 

7T 2 7T 2 2 
a4   = _   (A - A)     = -   (A   + A   - 2 A A) 

Letting 

X=|   (A2 + A2), 

y   = \   (2 A A) , 

we have 

ii   m   cos (x - y) - cos (x + y) (HI-56) 
v sin (x + y) - sin (x - y) 

Using some trig-identities, we obtain 

2 sin x sin y 
ib = — :—^  =  tan x . 

2 cos x sin y 

But ib  =  ± tan 0, so that 0  =  ± x.    Substituting for x, we finally have 

N' •(-)']!: Y\T   /    t"     \2      /W"\2 I    (+forFMup      | /TTT COv 
VlirTX^I    Ml") for FM down j' (in"58) 

The carrier term is (from 111-17) equal to cos (x   - 0).   Letting 9  =  x   - 0 

we obtain, after a fair amount of algebra, 

e » .„ •• '-^f^2^]. <""-»> 
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where the upper signs are for FM up, and the lower signs for FM down.    Now. 

since W" < < cu'' by about three orders of magnitude, suppose we ignore the 

second term in the brackets.    Substituting for y and X , we have 

0 "o••'"* (a)(£)WH')2 {:SS3L| <---> 
Again, this is for 

t"   >100 {V){3)&){&)»• (£) 
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